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Abstract
Decision-makers often face the challenge of identifying policy-relevant co-

horts from a broad range of subjects. To address this, I investigate variations in
policy effects in the presence of noisy data and redundant information. First,
I identify data-driven population groups as a preliminary step for examining
policy effect heterogeneity. Then I estimate the distribution of policy effects
within and across the identified groups. My primary contribution is a multi-
variate causal forest, a novel, computationally efficient method for personal-
ized policy analysis. I show that the method inherits desirable large sample
properties, and enhances the reliability of findings by reducing the variance of
policy effect estimates. To illustrate the applicability of the method, I revisit
a field experiment, conducted in cooperation with the Norwegian Labor and
Welfare Administration. In contrast to prior research, I discover that policy
variations highlight the need for personalized interventions to optimize sick-
ness absence management strategies.
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1 Introduction

Policymakers and researchers frequently employ randomized experiments to in-

vestigate the impact of multiple programs, interventions, or policies on outcomes

(Chernozhukov et al., 2017; Belloni et al., 2017; Hadad et al., 2021; Agrawal et al.,

2022). For instance, Mayo-Wilson et al. (2017) design randomized clinical trials to

investigate the effects of two treatments: gabapentin for neuropathic pain and que-

tiapine for bipolar depression. Lechner (2001) discusses the identification and esti-

mation of multiple treatment effects under the conditional independence assump-

tion.

The process of estimating and drawing inferences about policy effects encoun-

ters several fundamental challenges in the presence of heterogeneity, noise, and

multiple outcomes. First, the effects of policies at the individual level remain unob-

servable. Consequently, distinguishing heterogeneous effects from inherent noise

within specific population subgroups is a complex undertaking. Second, when

dealing with redundant information and multiple correlated effects, personalized

policy analysis can yield inefficient estimates and unreliable findings (Jackson et al.,

2011). Traditional techniques such as cross-validation are insufficient for accurately

identifying the subgroups that exhibit policy effect heterogeneity (Browning et al.,

2007; Athey et al., 2015). Finally, traditional techniques like the causal forest pro-

posed by Athey et al. (2019) demand significant computational resources when

making separate predictions for multiple outcomes and parameters.

I propose a multivariate causal forest, a novel, computationally efficient ap-

proach for personalized policy analysis in the presence of correlated subjects. The

framework sequentially integrates two distinct methodologies: partial least squares

(Helland, 1988) and the causal forest algorithm (Athey and Imbens, 2016). Specifi-

cally, I identify population groups using the partial least squares algorithm. Subse-

quently, I use the multivariate causal forest to estimate the means and quantiles of

policy effects both within and across the identified groups. Consequently, this arti-

cle revolves around three fundamental research objectives. Firstly, I assess whether
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the method efficiently reduces the redundant dimensions and minimizes inherent

noise. Secondly, I evaluate the capacity of the multivariate causal forest to cap-

ture the most diverse and policy-relevant segments of the population, especially

when dealing with multiple correlated outcomes. Lastly, I evaluate the precision

and coverage of multi-dimensional confidence intervals when accounting for the

covariance of multiple parameters.

The multivariate causal forest is a natural extension of the causal forest algo-

rithm (Athey and Imbens, 2016). The proposed approach offers distinct advantages

compared to conventional methods that estimate policy effects within arbitrarily

defined covariate subgroups. Specifically, it is adaptable to handle multiple, poten-

tially correlated policy or treatment effects. This property makes it highly advan-

tageous for situations in which policymakers are dealing with multiple interven-

tions, and outcomes, or possess prior insights into the correlation structure across

subjects. The method automatically selects covariates and their corresponding val-

ues for partitioning. This process incorporates honest splitting and cross-validation

techniques, effectively reducing the potential for overfitting bias and thereby en-

hancing the reliability of the results. Additionally, the multivariate causal forest is

highly computationally efficient and allows for the joint hypothesis testing.

The strategy for identifying data-driven population groups, inspired by factor

models, aligns with the approach proposed by Nareklishvili et al. (2022). In this

framework, the segments are characterized as continuous combinations of explana-

tory variables. Unlike discrete clusters, these continuous segments span the entire

spectrum of the population subgroups, facilitating a flexible and comprehensive

analysis of policy effect heterogeneity. In addition, they are designed to accommo-

date multiple correlated outcomes, and the resulting subgroups possess meaningful

economic interpretations.

I contribute to the literature by offering both theoretical and empirical insights

into personalized policy analysis. Building upon the work of Athey and Wager

(2019) and Athey et al. (2019), my theoretical contribution is to establish the asymp-

totic normality of the multivariate causal forest estimator. By various simulated
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experiments, I show that in comparison to benchmark methods such as causal for-

est (Athey and Wager, 2019) and sorted group average policy effects (Sorted GATE

by Chernozhukov et al., 2018), the multivariate causal forest improves the efficiency

of personalized policy effects. The improvement is visible through several distinct

mechanisms: it produces highly accurate policy effect estimates, and it significantly

reduces the variance of personalized policy effects relative to the benchmark meth-

ods, even when dealing with a limited number of subjects.

My empirical contribution is to investigate the randomized field experiment

conducted by Alpino et al. (2022) in cooperation with the Norwegian Labour and

Welfare Administration (NAV). The primary objective of this experiment is to ex-

amine the effects of summoning sick-listed individuals to dialogue meetings, as

compared to those who are not summoned but still have the option to request one.

Specifically, I estimate the impact of dialogue meetings on two variables: total days

of sickness absence and the number of sick leave days experienced within the given

sick leave spell. In this paper, my emphasis is on a single policy and two outcomes.

However, it’s worth noting that the multivariate causal forest can be applied to pre-

dict multiple outcomes and policy effects simultaneously.

Alpino et al. (2022) shows that the conventional causal forest methodology fails

to discover statistically significant heterogeneity in the effect of the dialogue meet-

ings on sickness absence. Interestingly, I find that linear combinations of these char-

acteristics forming policy-relevant groups might reflect statistically significant het-

erogeneity. In particular, I find distinct patterns among never-married females and

married sick-listed workers concerning the effect of dialogue meetings on sickness

absence. For never-married females with a low percentage of sickness absence, I

observe a significant reduction in the total number of days on sick leave. On aver-

age, never-married females, comprising more than 15% of the sample population,

experience a reduction of up to 10 days of sick leave. Conversely, the results for

married sick-listed workers paint a different picture. Dialogue meetings lead to

a statistically significant prolongation of sick leave, with an extension of up to 10

days. The policy effect for married individuals exhibits a higher variance compared
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to never-married females. The variations in policy effects highlight the need for tai-

lored interventions that consider individual characteristics, such as marital status,

to optimize sickness absence management strategies.

2 Related Literature

Despite the widespread practical application of random forests, the early theoreti-

cal research on this method primarily focuses on stylized or simplified versions of

the original algorithm. Breiman (2001) establishes an upper bound on the general-

ization error of forests in terms of correlation and the strength of individual trees.

This is followed by Breiman (2004), which concentrates on a stylized version of the

original algorithm. Lin and Jeon (2006) draw attention to a connection between ran-

dom forests and a specific class of nearest neighbor predictors. They also establish

the lower bound of the expected mean squared error for nonadaptive forests, which

is independent of the training set. Meinshausen and Ridgeway (2006) demonstrate

the consistency of random forests in the context of conditional quantile prediction.

Moving forward, Biau (2012) proves the consistency of random forests, provided

independence of the candidate splits and the predicted leaf outcome. Denil et al.

(2014), Wager (2014), and Scornet et al. (2015) propose consistent random forests

that closely resemble the original algorithm, particularly in sparse feature spaces.

Athey and Imbens (2016) and Wager and Athey (2018) take a step forward in

forest exploration by introducing causal forests for heterogeneous treatment ef-

fect analysis. They develop a univariate treatment effect estimator and prove the

asymptotic normality of the estimated treatment effects using the Hajek projection

of a U-statistic (Korolyuk and Borovskich, 2013). Athey et al. (2019) build upon this

foundation by introducing moment conditions for the outcome variable, thus gen-

eralizing the method to a broader class of parameters. They show the consistency

of a random forest tailored for correlated policy effects. Nekipelov et al. (2018) pro-

vide an interesting study demonstrating the uniform consistency of random forests

with multiple correlated parameters for classification problems. Li (2020) extend
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the asymptotic theory of the random forest to accommodate correlated coefficients

across multiple subsets (leaves) of a given tree. Ćevid et al. (2020) propose a novel

forest construction for multivariate responses based on their joint conditional distri-

bution, independent of the estimation target and the data model. Unlike this paper,

the authors focus on outcomes rather than parameters, and prediction performance

rather than the performance of joint confidence ellipses. Additionally, Wang et al.

(2022) introduce random forests for the instrumental variable approach.

Chernozhukov and Hansen (2006) propose quantile instrumental variable re-

gression for heterogeneous treatment effect analysis. A closely related article by

Chernozhukov et al. (2018) introduces a generic machine learning approach to es-

timate and infer key features of heterogeneous treatment effects in randomized ex-

periments. They proxy conditional average treatment effects by a given machine

learning approach and post-process them for inferring treatment effects. Their ap-

proach is also valid for high-dimensional data. Additionally, Belloni et al. (2017)

discuss inference on heterogeneous treatment effects based on high-performing ma-

chine learning methods.

The multivariate causal forest complements the existing theoretical work by ex-

tending the large sample theory to a multivariate setup. The multivariate causal

forest has the ability to jointly predict the means and quantiles of policy parame-

ters. In this paper, the multivariate random forest relies on local moment equations

that are generalizations of Chernozhukov et al. (2018); Chernozhukov and Hansen

(2006) and Athey and Imbens (2016) to group average policy effects. Specifically,

we assume, each group policy effect is the sum of its’ expectation and the corre-

sponding error. The goal is to minimize the deviation between the unobserved per-

sonalized policy effects, and the observed group-level means of these effects. The

moment function in this paper is also similar to generative adversarial networks,

where we minimize the deviation of the covariates with respect to their expected

value (Creswell et al., 2018; Liu and Yu, 2021).

The multivariate causal forest sets itself apart from the causal forest introduced

by Athey and Imbens (2016) due to its multivariate nature, while still inheriting
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a similar local moment function. In contrast, it differs from the generalized ran-

dom forest proposed by Athey et al. (2019) in terms of the estimation procedure.

The multivariate causal forest jointly estimates parameters and outcome variables,

whereas the generalized random forest estimates coefficients separately. Later in

this article, I demonstrate that different estimation procedures can yield similar re-

sults. However, Wang and Lin (2005) and Kolenikov and Bollen (2012) discuss the

efficiency of coefficients under misspecified variance. They find that, in the context

of longitudinal analysis, correctly specifying the variance function can improve es-

timation efficiency. Additionally, the group average policy effects in this paper dif-

fer from the sorted group average policy effects (Chernozhukov et al., 2018) by the

nature of the identified groups. Specifically, the groups here are allowed to be con-

tinuous, unordered, and a priori unknown. The identification of the latent groups

in this article relies on the underlying data structure, rather than proxy estimates of

conditional average policy effects (CATE).

3 Problem Formulation

In this section, I describe three main concerns: incorrectly specified distribution of

the outcomes, computational complexity, and the issues in the presence of redun-

dant characteristics. These concerns serve as the drivers for introducing the multi-

variate causal forest and the partial least squares tailored to multiple policies and

outcomes.

Consider a policy-maker who can choose between two different policies: one

involving summoning sick-listed workers to dialogue meetings (P1) and the other

using email notifications to inform them about the consequences of long-term sick

leave (P2). She is interested in two specific outcomes: the total number of days an

individual spends on sick leave (Y1); and the number of days specifically within

a single sickness episode (Y2). The policy-maker possesses a rich dataset contain-

ing various personal attributes of individuals, such as age, gender, education, and

social status, which are collectively represented as X.
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The initial concern of the policy-maker is that policies aimed at individuals on

sick leave may need to be tailored to account for differences in individual charac-

teristics. For instance, young employees on sick leave might exhibit distinct be-

havioral patterns compared to their older counterparts. In this context, the analysis

necessitates a method to identify the key variables that predominantly influence the

diversity in the effects of policies.

The second concern of the policy-maker revolves around the high degree of

correlation between the outcomes. In the analysis of multiple outcomes, it’s typ-

ical to predict each one separately. When there are no missing values in the data

(or any missing values occur randomly), analyzing each outcome individually can

produce unbiased estimates for policy effects, even if the outcomes are correlated.

Neglecting outcome correlations may result in imprecise estimation of the variance-

covariance matrix of policy effects. This imprecision can lead to inaccuracies in es-

timated confidence intervals, subsequently increasing both Type I and Type II error

rates.

A simple example illustrates the second concern. Consider the outcomes, the

total number of sick leave days and the number of days within a single sickness

episode are correlated and jointly normally distributed: Y1 ∼ N (µ1, σ1) and Y2 ∼

N (µ2, σ2) with means µ1, µ2, and standard deviations σ1 and σ2 for outcomes Y1 and

Y2, respectively. Because the outcomes are correlated, it follows that the estimates

of policy effects and their variances are also correlated.

Consider the standardized population policy effect between the group subjected

to the policy and the control group:

δj =
µ
(P=1)
j − µ

(P=0)
j√

σjj
, j = [1, 2].

µ
(P=1)
j and µ

(P=0)
j represent the population means for the group exposed to the

policy (P = 1) and the control group (P = 0), respectively. I use σjj to denote the

pooled population variance for the j−th outcome.
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The corresponding standardized sample policy effect is given as

dj =
Ȳ(P=1)

j − Ȳ(P=0)
j

√sjj
,

where Ȳ(P=1)
j and Ȳ(P=0)

j represent the sample means for the group exposed to the

policy (P = 1) and the control group (P = 0), respectively. sjj is the sample analogue

of σjj.

Olkin and Gleser (2009) show that the sampling variance, and covariance be-

tween d1 and d2, are given as:

σdj ≈
N(P=1) + N(P=0)

N(P=1)N(P=0)
+

d2
j

2(N(P=1) + N(P=0))
,

and

σd1d2 ≈
N(P=1) + N(P=0)

N(P=1)N(P=0)
ρ +

d1d2ρ2

2(N(P=1) + N(P=0))
.

N(P=1) and N(P=0) denote the number of subjects in the exposed and control

group, correspondingly. ρ is the correlation between the two outcomes. (1) shows

that if two outcome variables are positively correlated, the covariance between stan-

dardized policy effects (d1 and d2) is also positive. Neglecting this connection be-

tween outcomes can lead to flawed statistical conclusions (Becker, 2000). To clarify,

when we consider outcomes (and, in turn, policy effects) as unrelated, we disre-

gard the shared information provided by each observed policy effect. This leads

to underestimation of standard errors. As a result, the confidence intervals become

excessively narrow, and the likelihood of making Type I errors increases when esti-

mating and testing the policy effects. Therefore, Becker (2000) concludes that “No

reviewer should ever ignore dependence among study outcomes. Even the most

simplest ad hoc options are better than pretending such dependence does not ex-
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ist.”

Another significant concern is the computational expense linked to modeling

each outcome individually. As depicted in Figure 11, separate estimations can be

notably costly, particularly when dealing with multiple outcomes.
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Figure 1: The time spent (in seconds) to predict the outcome jointly and separately.
I build the random forest algorithm with 1000 trees in each approach.

Lastly, there’s a concern that certain individual characteristics might not signif-

icantly contribute to explaining the variations in policy effects. When this occurs,

the estimates of policy effects become more uncertain, displaying greater variance.

In classical random forest algorithms, the basic assumption is that each variable has

a reasonable chance of affecting the estimation of policy effects, as noted in Athey

and Wager (2019). This necessitates a substantial amount of data to accurately iden-

tify the most relevant variables. Nareklishvili et al. (2022) propose a dimensionality

reduction method to aid the issue.

To address these concerns, I utilize partial least squares to identify the most per-

tinent characteristics before estimating variations in policy effects. The framework

in this article is explicitly tailored to simultaneously address multiple outcomes

and policies. A significant benefit of the multivariate approach lies in its simultane-

ous utilization of data from all outcomes. By leveraging information from multiple

outcomes, we enhance the precision of policy effect estimates and maximize the
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precision of confidence intervals (Jackson et al., 2011). In this paper, I focus on two

outcomes and a single binary policy.

4 Empirical Examples

The purpose of this section is to shed light on the empirical applications that serve

as motivating examples for the proposed multivariate causal forest algorithm.

Example 1: Multiple Policy Arms and Multiple Outcomes

In the context of randomized controlled trials (RCTs), Athey and Imbens (2016)

present a specific form of the linear regression model. This model describes het-

erogeneous policy effects as follows:

outcomei = θ(Xi)× policyi + Xiθ + errori. (1)

Here, θ(Xi) represents the effect of a binary policy on the continuous outcome for

each person i = 1, . . . , N. This effect varies based on individual characteristics Xi.

The vector-valued parameter θ signifies the impact of Xi on outcome. Additionally,

error accounts for the residuals associated with the outcome and is independent of

policy or individual characteristics.

The multivariate causal forest accommodates an extended version of (4) to en-

compass scenarios involving multiple policies and outcomes. In the case of p =

1, . . . , P binary policy arms, and a single continuous outcome, the model is defined

as follows:

outcomei =Xiθ + θ1(Xi)× policy1i + · · ·+ θP(Xi)× policyPi + errori.

The expression policypi serves as a binary indicator denoting whether an individ-

11



ual i pertains to policy arm p. Additionally, θp(Xi) denotes the parameter associated

with a p−th policy arm. This model not only accommodates multiple policy effects

within a specific policy arm but also permits the grouping of policy effects across

different arms. This flexibility allows for a more detailed examination of heteroge-

neous policy effects.

In scenarios involving multiple outcomes, assuming a researcher is dealing with

M continuous outcome variables outcomemi with m = 1, . . . , M, the model for eval-

uating various policy outcomes can be expressed as:

outcomei =Xiθ + θ1(Xi)1(outcomei ∈ outcome1i)× policy1i + · · ·+

θM(Xi)1(outcomei ∈ outcomeMi)× policyMi + errori.

The term 1(outcomei ∈ outcomemi) serves as an indicator for each respective m-th

outcome, where m ranges from 1 to M. The variables policymi and θm(Xi) repre-

sent a binary indicator for a policy and its effect on the m−th continuous outcome,

respectively.

The joint estimation approach in this paper offers the advantage of aggregat-

ing comparable policy effects. This facilitates the customization of policy interven-

tions. Additionally, it enables researchers to investigate the correlation of policy

effects across diverse outcome variables, an otherwise challenging task. The joint

estimation in addition accommodates variations in policy effects across observable

characteristics Xi, ensuring the estimation of correct standard errors.

Example 2: Demand and Supply Analysis

Contemporary likelihood-based methodologies applied to the joint estimation of

demand and supply systems encounter challenges in accommodating unobserved

heterogeneity within the model framework. Notably, researchers have primarily

directed their attention towards modeling common shocks, incorporating purchase
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histories and demographic variables, while only partially addressing the issue of

consumer heterogeneity (Iyer and Villas-Boas, 2003; Draganska and Jain, 2002).

Multivariate causal forest can be used to not only control for the individual charac-

teristics but detect heterogeneities of multiple responses simultaneously.

Consider the analysis of the impact of ticket prices (denoted as the policy vari-

able Pi) on air-travel demand (represented by the outcome variable Yi) (Hartford

et al., 2017):

air travel demandi = f (ticket pricei, Xi) + εi.

Here, Xi represents a vector of characteristics, including variables such as holi-

days. f denotes a nonlinear smooth function. It is essential to recognize that ticket

prices are typically not set exogenously; rather, they tend to be influenced by unob-

servable factors, represented by εi. Consequently, adopting a simplistic approach

that predicts airline demand solely as a function of price may yield misleading con-

clusions. A standard solution is to introduce an exogenous driver of prices, in this

setting, fuel costs (Zi, a binary indicator for high fuel costs), and simultaneously

estimate a second equation:

ticket pricei = m(fuel costsi, Xi) + vi,

where vi is the corresponding error of price, and m is another nonlinear smooth

function.

Another classic example is provided by Angrist and Evans (1996). The authors

estimate the impact of childbearing on women’s labor supply. To achieve this, they

employ parental preferences for a mixed sibling-sex composition as an exogenous

determinant of childbearing:

hours worked womeni = f (childbearingi, Xi) + εi,

childbearingi = m(mixed gender preferencei, Xi) + vi.
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Within the framework of the multivariate causal forest, I embark on a simulta-

neous estimation process. Specifically, I analyze the heterogeneity of two distinct

parameters simultaneously:

θ1 =E(Yi|Zi = 1, Xi)− E(Yi|Zi = 0, Xi),

θ2 =E(Pi|Zi = 1, Xi)− E(Pi|Zi = 0, Xi).

As before, Yi, Pi, Zi, and Xi are defined as the outcome, policy, exogenous in-

strument, and independent characteristics. This approach enables the analysis of

heterogeneity in Wald estimates θ̂Wald obtained according to the sample analogue

of the ratio (Angrist and Imbens, 1995):

θWald =
E(Yi|Zi = 1, Xi)− E(Yi|Zi = 0, Xi)

E(Pi|Zi = 1, Xi)− E(Pi|Zi = 0, Xi)
.

This method shares similarities with the instrumental forest approach intro-

duced by y Athey et al. (2019). However, a key distinction lies in the estimation

strategy. Our approach enables the joint estimation of both the numerator and de-

nominator, allowing us to incorporate their covariance into the model.

In this setting, the structural equation model consists of two outcomes. The

setup could be generalized to include more than two outcomes (Ullman and Bentler,

2012). The multivariate causal forest framework opens up avenues for exploring

various questions, such as estimating supply and demand effects of disability on

labor force participation (Stern, 1996); demand analysis with many prices (Cher-

nozhukov et al., 2019).

Example 3: Regression Discontinuity Design

A Regression Discontinuity Design (RDD) is a quasi-experimental methodology de-

signed to estimate the causal effects of interventions. It involves the assignment of

interventions based on a predetermined cutoff or threshold (c), where the assign-
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ment changes either above or below this threshold. For instance, students may

be placed into educational programs according to placement scores. Such a score

would represent an exogenously set cutoff. The classical parametric regression dis-

continuity design may be formulated by the following equation:

outcomei = θ0 + θ × policyi + Ciθ + εi. (2)

In this context, policyi takes the value of one when Ci ≥ c and zero otherwise.

Ci is a continuous variable determining the exposure to the policy, and Yi is a con-

tinuous outcome variable ranging in (−∞, ∞).

The multivariate causal forest extends the traditional RDD framework to en-

compass multiple policies, enabling the investigation of variations in policy effects

across individual characteristics. I extend (2) to accommodate p = 1, . . . , P inter-

ventions:

outcomei = θ0 + θ1(Xi)× policy1i + · · ·+ θP(Xi)× policyPi + Ciθ + εi,

where policypi and θ1(Xi) represent a binary indicator for a p−th policy and its

influence on the outcome, correspondingly.

5 Group Average Policy Effects

Let θg represent a vector-valued policy effect for a group g, which we seek to in-

vestigate formally 1. We express this effect as the sum of the group average policy

effect, denoted by E(θg), and the randomness εg associated with group g(Xi) (and

1If the parameters and random variables are vector-valued, the operations apply coordinate-
wise.
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uncorrelated with E(θg)):

θg = E(θg) + εg. (3)

The group average policy effect represents the disparity in expected outcomes,

E(Yi), between two distinct scenarios: one where a specific group is subjected to a

particular policy (Pi = 1), and another where the same group is not exposed to the

policy (Pi = 0):

E(θg) = E
(
Yi(1)− Yi(0)|g(Xi)

)
. (4)

The groups in this paper are data-driven (unknown a priori), continuous, and

uncorrelated. For example, if the group consists of two components, then we de-

fine the group as g(Xi) = [Zi1, Zi2], where Zik for k = 1, 2 is a k-th component for

an individual i. These components may take any value between [−∞,+∞]. For

example, consider two distinct components:

 [3.50, 4.27, 3.15, 5.25, 0.33, 0.11, 0.16,−0.71]

[0.05, 0.10,−0.25, 0.20, 7.22, 8.14, 6.26, 5.28].


In this scenario, a clear partition emerges, dividing the components into two

distinct groups: Group 1 with high values of the first component, and Group 2

corresponding to high values of the second component.

Group 1 ∼



[3.50, 0.05]

[4.27, 0.10]

[3.15,−0.25]

[5.25, 0.20]


, Group 2 ∼



[0.33, 7.22]

[0.11, 8.14]

[0.16, 6.26]

[−0.71, 5.28].


.
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To identify specific groups that correspond to each component, I regress these

components on individual characteristics. Assume, high values of the first compo-

nent are strongly indicative of older individuals, while high values of the second

component are associated with females. Consequently, the first group comprises

older males, while the second group comprises young females. Even though the

components within each group are uncorrelated, there exists a slight overlap be-

tween them, attributable to their continuous nature.

Figure 2 illustrates the continuous nature of the two groups. In particular, it

demonstrates that young females are more inclined to have high values of the sec-

ond component, while older males are more commonly associated with high values

of the first component.

Older Males Young Females

(3.50, 0.05) (0.33, 7.22) (-0.71, 5.28)

Figure 2: Visualisation of two data-driven groups (older males and young females)
that consist of continuous components.

This article revolves around two primary research goals. First, it centers on iden-

tifying and forming economically meaningful population groups adaptively. Sec-

ond, it aims to systematically characterize the most diversified components within

the identified groups of the population.

5.1 Identification of Data-Driven Groups of the Population

To ensure the formation of well-defined and meaningful groups, I posit the follow-

ing assumption:
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Assumption 5.1 (group cardinality). The dimension of the space of latent groups, de-

noted as dim(G), is weakly lower than the dimensionality of the space of the original covari-

ates, denoted as dim(X ), i.e., dim(G) ≤ dim(X ).

By imposing Assumption 5.1, we ensure that the process of subgroup forma-

tion remains feasible and interpretable in high-dimensional scenarios. Note that,

potential outcomes in (4) remain unobserved, as each group is exclusively exposed

to either the policy intervention or the control condition, but never both simultane-

ously. To estimate group average policy effects, I assume, the policymaker governs

the data-generating process through a randomized controlled trial:

Assumption 5.2 (group unconfoundedness). The data are independently and identi-

cally distributed (i.i.d), and conditional on the population groups, the policy is independent

of the potential outcomes

Yi(1), Yi(0) ⊥⊥ Pi|g(Xi).

Here, Yi(1), Yi(0) ∈ RM represent potential outcomes. Assumption 5.2 is not in-

herently stronger than the classical unconfoundedness assumption
(
Yi(1), Yi(0) ⊥

Pi | Xi
)

when g does not provide any additional information beyond characteristics

Xi ∈ RD. 2

Due to Assumption 5.2, the group average policy effect is given as

E(θg) = E
(
Yi|Pi = 1, g(Xi)

)
− E

(
Yi|Pi = 0, g(Xi)

)
. (5)

I follow the approach of Nareklishvili et al. (2022) and seek to identify the lin-

ear combinations of the characteristics, labeled as target components, that explain

the highest variation in Xi as well as the outcome Yi. According to Helland (1990,

2014), the vectors of characteristics and outcomes, Xi and Yi respectively, can be

2g : Xi 7→ g(Xi) may be an affine transformation that preserves information inherent to Xi. In
that case, the classical unconfoundedness assumption implies Assumption 5.2. See Rosenbaum and
Rubin (1983) for further details.
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decomposed into the latent, unobserved structures. In an iterative manner, the tar-

get component that captures the most pronounced variations within the observable

characteristics Xi also unveils the latent structure governing the most significant

fluctuations in the outcome Yi. This approach is known as the partial least squares

algorithm.

5.2 Geometry of Latent Groups

Overall, the model for multivariate partial least squares involves decomposing the

input and output space into latent structures:

X︸︷︷︸
N×D

= Z︸︷︷︸
N×G

× VT︸︷︷︸
G×D

+ E︸︷︷︸
N×D

,

Y︸︷︷︸
N×M

= R︸︷︷︸
N×G

× QT︸︷︷︸
G×M

+ F︸︷︷︸
N×M

.

X ∈ RN×D is a matrix of individual characteristics.

Y ∈ RN×M is a matrix of outcomes.

Z ∈ RN×G represent the matrix of latent components that make up groups

g(X).

R ∈ RN×G is an output score.

V and Q denote D × G and M × G loading matrices (weights).

E and F represent errors of independent characteristics, and outcomes, respec-

tively.

The fundamental concept behind the identification of the first partial least squares

component involves the discovery of unit vectors in two spaces: v in the input space

RD and w in the output space RM. The goal is to maximize the product of the pro-
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jection of an input vector onto the unit vector

Z1︸︷︷︸
N×1

= X︸︷︷︸
N×D

v︸︷︷︸
D×1

and the projection of an output vector onto its corresponding unit vector

R1︸︷︷︸
N×1

= Y︸︷︷︸
N×M

w︸︷︷︸
M×1

.

Formally,

max(v,w)E(ZT
1 · R1) = max(v,w)E(vTXT · Yw) = max(v,w)v

TE(XTY)w. (6)

The vectors |v| = 1 and |w| = 1 represent unit vectors, each with a length of

one. CXY = E(XTY) signifies the covariance between the mean-centered random

variables X and Y. The term Z1 represents the first component that constitutes the

data-driven groups in this context. R1 is known as the output score.

To determine the directions represented by vectors v and w, we can employ the

Lagrange multiplier method and solve for them using the following optimization

problem:

(v0, w0) = argmax(v,w)

{
vTCXYw − 1

2
λv(vTv − 1)− 1

2
λw(wTw − 1)

}
. (7)

In this equation, λv and λw are Lagrange multipliers. After solving for the unit

directions in (7), we end up with

CXYCYXv = λvλwv,

CYXCXYw = λvλww.
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This implies that vector v is an eigenvector of matrix CXYCYX, and vector w is an

eigenvector of matrix CYXCXY. It can be shown that λv = λw = λ. Figure 3 presents

the identification of the first component visually.

Figure 3: Identification of the first latent group (factor) by the partial least squares
algorithm.

The subsequent step involves predicting the input and output as a function of

the first component and obtaining residuals:

X(1) = X − X̂ = X − Z1β̂T
x (8)

Y(1) = Y − Ŷ = Y − Z1β̂T
y . (9)

Here, β̂x and β̂y are D × 1 and M × 1 vectors of coefficients obtained through ordi-

nary least squares regression of the input and outcomes on the first component Z1,

respectively. To identify the second component, we iterate the procedure, replac-

ing the original characteristics and outcomes with residualized characteristics X(1)

and outcomes Y(1). Subsequent components are obtained similarly. In this paper,

cross-validation yields the optimal number of components.
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5.3 Estimation of Heterogeneous Group Average Policy Effects

Following the categorization of the population into groups, the main objective is

to compute the group average policy effects. The application of the partial least

squares procedure is specifically designed for multiple outcomes. The formed groups

not only encapsulate characteristics pertinent to each outcome but also capture

shared information between the two outcomes. Consequently, I propose a causal

forest algorithm designed for multiple outcomes.

The approach involves recursively partitioning the space of identified groups,

denoted as G, using axis-aligned splits. The primary objective is to estimate the

vector of policy effects within each partition. An axis-aligned split is defined as a

pair (j, γ), where j = 1, . . . , G represents a specific group (splitting coordinate), and

γ ∈ R is the value of this group (splitting index).

Let P (0) = G ∈ RG represent the parent node of the tree. We strategically select

a splitting coordinate j : 1 ≤ j ≤ G and a splitting index γ to divide P (0) into two

non-overlapping rectangles, denoted as child nodes:

P (1,1) = P (0) ∩ {γ̃j ∈ P (0) : γ̃j ≤ γ} and P (1,2) = P (0) ∩ {γ̃j ∈ P (0) : γ̃j > γ},

(10)

where γ̃j represents the j-th coordinate of the vector g(Xi) derived from the training

data. Subsequently, this sequential splitting process is iteratively applied to the

resulting child nodes, P (1,1) and P (1,2), until a specified stopping criterion is met.

Crucially, each split is based on data that belong to the corresponding partition,

ensuring data-driven decision-making at each step. Figure 4 illustrates the process

graphically.

Figure 4: The splitting process of a tree.
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The sequence of k splits induces the partition of G which we denote by Π. This

partition consists of a collection of non-overlapping rectangular regions ℓ, referred

to as leaves or terminal nodes in the tree structure. The amalgamation of these parti-

tions constitutes a latent group space, mathematically expressed as follows:

Π = {ℓ1, ℓ2, . . . , ℓ|Π|} and ∪|Π|
n=1 ℓn = G.

The underlying split process ensures that every element within G is precisely allo-

cated to one of these partitions.

Athey and Imbens (2016) propose a novel approach to estimate heterogeneous

policy effects under the assumption of unconfoundedness. Their method involves

a two-sample split procedure, with a training sample, denoted as Str, used to iden-

tify and construct the splitting variables and corresponding values. Subsequently,

they utilize an estimation sample, denoted as Sest, to compute policy effects across

various segments of latent groups in the context of interest. In our framework, the

unbiased sample analogue of the expectation of θg is given as:

θ̃(g(Xi), Sest, Π) =
|Π|

∑
n=1

(
1(γ ∈ ℓn, Pi = 1)

1
|i : g(Xi) ∈ ℓn, Pi = 1| ∑

i:g(Xi)∈ℓn

Yi(1)−

1(γ ∈ ℓn, Pi = 0)
1

|i : g(Xi) ∈ ℓn, Pi = 0| ∑
i:g(Xi)∈ℓn

Yi(0)
)

,

(11)

where |Π| is the total number of the terminal nodes. 1(γ ∈ ℓn, Pi = p) is a binary

variable and equals one when, for a given p ∈ {0, 1}, a generic test data point γ

belongs to a terminal leaf ℓn and zero otherwise. Yi(p) denotes an M−dimensional

outcome variable.
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6 Asymptotic Properties

A conventional method for demonstrating the asymptotic properties of trees and

forests entails the use of classical trees and forests tailored to predict the outcome

variable (Wager, 2014; Wager and Athey, 2018). I follow the same strategy in our

investigation and extend the properties to policy effects afterward.

Let Ai = (Yi, g(Xi))
N
i=1 represent the dataset without any policy information. We

consider a prediction of a classical tree for a given individual with the latent group

value of γ. The prediction is obtained by averaging the vector-valued outcome

within each terminal leaf (node):

T(γ, ξ, A1, . . . , AN) =
|Π|

∑
n=1

1(γ ∈ ℓn)
1

Nℓn
∑

i:g(Xi)∈ℓn

Yi.

Here, ξ represents an external source of randomization, facilitating randomized

split selection procedures during the construction of a tree. The function 1(γ ∈

ℓn) acts as an indicator, equaling one if the point γ belongs to the terminal leaf

ℓn, and zero otherwise. The term Nℓn denotes the number of observations in the

terminal node ℓn. In essence, a tree T(γ, ξ, A1, . . . , AN) provides a prediction at

the point γ based on the dataset {Ai}N
i=1 and a randomization parameter ξ. For a

more comprehensive and intuitive understanding of classification and regression

trees, detailed insights can be found in the works of Lewis (2000) and Kingsford

and Salzberg (2008).

Trees are known for their ease of interpretation and implementation, as well as

their robustness against outliers and missing data. However, they suffer from high

variance, instability, and a tendency to overfit the training data, making it chal-

lenging to determine the optimal tree structure. To address these limitations, the

random forest algorithm was introduced by Breiman (2001). In the context of ran-

dom forests, let s < N be a subset of size s sampled from a population indexed

by i = {1, . . . , N}. The value of s is typically set as s = Nβ, with β being cho-
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sen sufficiently close to 1 (Wager and Athey, 2018). Following Breiman (2001) and

Wager and Athey (2018), the random forest estimator is defined as the average of

the individual tree estimators, aggregated over all possible size-s subsamples of the

training data, while also taking into account the auxiliary noise ξ. Specifically, the

prediction of a random forest estimator for a specific individual (with a group value

of γ) is defined as

F (γ, A1, . . . , AN) =
1(
N
s
) ∑

1≤i1≤···≤is≤N
Eξ T(γ, ξ, Ai1 , . . . , Ais), (12)

where i1, . . . , is are the size-s subsamples of the population {i = 1, . . . , N}. (N
s )

denotes the binomial coefficient representing the number of ways to choose s sub-

samples from a population of size N. The prediction is the average of the expected

predictions over all possible combinations of these subsamples.

In practice, we estimate a random forest using Monte Carlo averaging, which

can be expressed as follows:

F (γ, A1, . . . , AN) ≈
1
B

B

∑
b=1

T(γ, ξ∗, A∗
1 , . . . A∗

N). (13)

Here, the sets {A∗
1 , . . . A∗

N} are drawn without replacement from the original dataset

{A1, . . . AN}. The parameter B denotes the number of sub-samples considered for

the averaging process. The output of F (γ, A1, . . . , AN) is a 1× M vector for a given

individual, and all the arithmetic operations mentioned in this context are defined

coordinate-wise in RM.

6.1 Assumptions

Random forests for group average policy effects rest on similar assumptions intro-

duced by Wager and Athey (2018). The first assumption to impose is the ”honesty”

of a tree.
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Assumption 6.1 (Honesty). Given the identified latent groups g(Xi), we assert that the

outcome variable Yim and the splitting parameters (i.e. the splitting coordinates and split-

ting indices denoted by (j, γ)) are statistically independent of each other. Specifically, for

each individual i where the outcome Yim contributes to the final prediction:

F(Yim|g(Xi), (j, γ)) = F(Yim|g(Xi)).

F represents the probability density function associated with the respective m-th outcome

variable, with m ranging from 1 to M.

This requirement can be addressed through various approaches. In this article,

inspired by the work of Athey and Imbens (2016), I adopt a method involving the

division of the dataset into two distinct partitions: a training set (Str) and an estima-

tion set (Sest). Observations in Str and the groups g(Xi) ∈ Sest determine the optimal

splitting coordinates and indices for constructing the decision trees. Subsequently,

the predicted outcomes are generated based on the estimation sample Sest.

Another fundamental assumption in this article concerns the data-generating

process.

Assumption 6.2 (Data Generating Process 1). Let Yi = f (b0 + Piθ(g(Xi)) +Xib) + εi

where b is a D × 1 vector of coefficients, b0 is a constant and f is an infinitely differentiable

non-linear mapping. Assume, Xi have a joint Elliptical distribution with the mean µX

and a variance ΣXX. Let Xi be independent of εi. Moreover, let Sxx and sxy converge in

probability to ΣXX (the population variance of Xi) and σXy (the population covariance of Xi

and Yi) when N → ∞. Moreover, let there exist a pair of eigenvectors and eigenvalues

(vj, λj) for which σXy = ∑M
j=1 λjvj (with λj non-zero for each j = 1, . . . , M). Assume also

E(| f (Ui)|) < ∞ and E(Ui| f (Ui)|) < ∞ with Ui = b0 + Xib and q = M.

According to Assumption 6.2, the relationship between the response variable

and the independent characteristics adheres to a predetermined functional form.

Moreover, the subject characteristics follow an elliptical distribution, exhibiting an

ellipse-like shape in a multi-dimensional coordinate system. Although this assump-
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tion may not always hold in real-world scenarios, empirical evidence has demon-

strated that the results obtained under this assumption are not significantly diver-

gent from those obtained when the features have alternative types of distributions

(see Brillinger, 2012). Under Assumption 6.2, Nareklishvili et al. (2022) show that

the partial least squares estimator is consistent up to a proportionality constant.

The proof relies on the analytic solution of partial least squares weights proposed

by Helland (1990) and Stein’s lemma discussed by Brillinger (2012).

Assumption 6.3 (Data Generating Process 2). The identified latent groups g(Xi) are

supported on the unit cube g(Xi) ∈ [0, 1]G, with a density that is bounded away from 0 and

∞. First and second moments, E(Yim|g(Xi) = γ), E
((

Yim
)2|g(Xi) = γ

)
, are Lipschitz-

continuous for each m-th outcome variable, respectively (m = 1, . . . , M). Furthermore,

Var(Yim|g(Xi) = γ) is bounded away from 0 (i.e., in fγ∈GVar(Yim|g(Xi) = γ) > 0).

Lipschitz-continuity and bounded variances represent widely used assumptions

in the literature (Wager and Athey, 2018; Biau, 2012). The outcomes of the paper are

not explicitly contingent on the distributional assumptions of g(Xi), but they affect

the constants employed throughout the study (Lemma 2 and Theorem 3 in Section

3.2 in Wager and Athey, 2018).

Assumption 6.4 (Random Split Trees). At each recursive step, the probability that the

next split occurs at j-th group is bounded below by π/d for π ∈ (0, 1], for all j = 1, . . . , G.

According to the works by Meinshausen and Ridgeway (2006) and Wager and

Athey (2018), we introduce Assumption 6.4, which guarantees that during each

recursive step of the tree-building process, each identified group is chosen with a

probability of at least π/d for some 0 < π ≤ 1 at every splitting step.

Assumption 6.5 (The Splitting Algorithm is (α, k)-regular). There exists α > 0, where

each split leaves at least a fraction α of the available training examples on each side of the

split, and moreover, the splitting ceases at a node when it contains less than k observations

for some k ∈ N.
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Assumption 6.5 guarantees that each partitioned half-space contains a sufficient

number of observations (individuals). It has been demonstrated by Wager and

Walther (2015) that under this assumption, the half-spaces formed by the algorithm

are also large in Euclidean volume. Moreover, the assumption imposes an upper

bound on the number of observations in terminal nodes, leading to fully grown

trees of depth k, where each terminal node contains between k and 2k − 1 observa-

tions. Consequently, this property places an upper limit on the variance of the tree

estimator at any given group value γ.

Assumption 6.6 (Overlap). We assume that for some 0 < ϵ < 1 and all γ ∈ [0, 1]G:

ϵ < P(Pi = 1|g(Xi) = γ) < 1 − ϵ.

Assumption 6.6 guarantees that for large enough N, there will be enough indi-

viduals with and without the policy intervention.

6.2 Consistency and Asymptotic Normality

A random forest estimator can be viewed as a U-statistic, a concept introduced by

Hoeffding (1961) and further developed in the theory of statistics (Korolyuk and

Borovskich, 2013). The Höeffding decomposition, also known as the Hajek pro-

jection, is described by Hájek (1968) and der Vaart (1998) in the univariate case. To

explore the large sample theory of random forests within a multivariate framework,

I extend the fundamental properties of the Höeffding decomposition to encompass

multiple outcomes. An established method for exploring the large sample theory

of random forests involves determining the lower bound of its Höeffding decom-

position. In line with this conventional approach, I pursue the same strategy in this

section.

Consider a vector-valued function denoted as T ∈ RM. This function is charac-

terized by being measurable and permutation symmetric, where the latter property

implies that T(πγ) = T(γ) holds true for all π ∈ Π (a tree in this context). The
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Hajek projection of this function is defined as follows:

Ṫ = E(T) +
N

∑
i=1

[
E(T|g(Xi))− E(T)

]
=

N

∑
i=1

E(T|g(Xi))− (N − 1)E(T). (14)

Intuitively, (14) represents a projection of the vector-valued function T onto

the linear subspace encompassing all random variables of the form ∑N
i=1 fi(g(Xi)),

where fi : RG 7→ R are arbitrary measurable functions satisfying E( f 2
i (g(Xi)) < ∞

for i = 1, . . . , N. This projection ensures that the conditional expectation of Ṫ in (14)

coincides with the conditional expectation of T, denoted as:

E(Ṫ| fi(g(Xi))) = E(T| fi(g(Xi))), and (15)

E(Ṫ) = E(T).

Now consider a vector-valued random forest estimator denoted as

F (γ, A1, . . . , AN) ∈ RM, with a corresponding vector of means µ. Let Ḟ (γ, A1, . . . , AN)

represent the Hajek projection of this multivariate random forest estimator, and

let Σ denote the covariance matrix of the Hajek projection. It is important to note

that the trees in Ḟ (γ, A1, . . . , AN) are symmetric, and the observations are indepen-

dently and identically distributed (i.i.d) as before. Under these conditions, Lemma

6.1 holds.

Lemma 6.1. The Hajek projection, denoted as Ḟ (γ, A1, . . . , AN), is given by the expres-

sion:

Ḟ (γ, A1, . . . , AN)− µ =
s
N

N

∑
i=1

(
T1(Ai)− µ

)
,

where Ṫ = ∑s
i=1 T1(Ai) with T1(a) = Eξ,A2,...,AN T(γ, ξ, a, A2, . . . , AN) represents the

Hajek projection of a tree T(γ, A1, . . . , AN) = Eξ T(γ, ξ, A1, . . . , AN) ∈ RM. The pa-

rameter s = Nβ as before, and M represents the dimension of the outcome variables in each
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terminal node.

The covariance matrix Σ of the Hajek projection is given by:

Σ =
s
N

V ˙(T) ∈ RM×M,

where V denotes the covariance matrix of the projected elements of the tree.

Proof. See Appendix A.0.1.

In Appendix A.0.1, Figure 16 illustrates the projection of random forests onto the

subspace defined by variables of the form ∑N
i=1 fi(g(Xi)). The projection meets the

required conditions for the Lindeberg central limit theorem (Billingsley, 2013; DiCi-

ccio and Romano, 2022), therefore, the Hajek projection of the multivariate random

forest estimator is asymptotically normally distributed:

Σ−1/2(Ḟ (γ, A1, . . . , AN)− µ
) d−→ N (0, IM×M),

where 0 is a RM vector of zeros and IM×M is an identity matrix.

To establish the asymptotic normality of the multivariate random forest esti-

mator, we introduce an insightful relationship between the estimator and its pro-

jection by adding and subtracting Σ−1/2Ḟ (γ, A1, . . . , AN) into the expression for

Σ−1/2(F (γ, A1, . . . , AN)− µ
)
. This manipulation leads to the following decompo-

sition:

Σ−1/2(F (γ, A1, . . . , AN)− µ
)
= Σ−1/2(F (γ, A1, . . . , AN)− Ḟ (γ, A1, . . . , AN)

)
+

Σ−1/2(Ḟ (γ, A1, . . . , AN)− µ
)
.
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Formally, the objective of this article is to show that:

Σ−1/2(F (γ, A1, . . . , AN)− Ḟ (γ, A1, . . . , AN)
) p−→ 0.

Then by Slutsky’s theorem, the multivariate random forest estimator is asymptoti-

cally normally distributed.

In line with Wager and Athey (2018), I derive the lower bound of the variance of

a vector-valued forest Ḟ (γ, A1, . . . , AN) and demonstrate its’ convergence to zero.

The primary focus lies in proving the convergence in squared mean of the expres-

sion Σ−1/2(F (γ, A1, . . . , AN)− Ḟ (γ, A1, . . . , AN)
)
. For the sake of brevity and clar-

ity, we shall use the more concise notations F and Ḟ to represent F (γ, A1, . . . , AN)

and Ḟ (γ, A1, . . . , AN), respectively. Lemma 6.2 obtains the upper bound of the

squared deviation between the forest and its’ Hajek projection.

Lemma 6.2. The mean squared difference of F and Ḟ has the upper bound:

E
(
F − Ḟ

)T
Σ−1(F − Ḟ

)
≤ s

N
tr
((

V(Ṫ)
)−1

V(T)
)

,

where tr is a trace operator, and V(T) and V(Ṫ) denote the variance of a multivariate tree

and its’ Hajek projection, respectively.

Proof. See Appendix A.0.2.

Under Assumptions 6.1-6.6, Theorem 6.1 shows that s
N tr

((
V(Ṫ)

)−1
V(T)

)
ap-

proaches zero in the limit.

Theorem 6.1. The entries of V(T) are bounded and its diagonal elements are bounded

away from zero. Moreover, the lower bound of the off-diagonal terms of V(Ṫ) are on the

order of o
( 1

logp(s)

)
. The upper bound in Lemma 6.2 converges to zero in the limit:

s
N

tr
((

V(Ṫ)
)−1

V(T)
)
−→ 0.

Proof. See Appendix A.0.3.
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By Slutsky’s theorem, Theorem 6.1 implies that the multivariate random for-

est estimator is asymptotically normally distributed. Appendices A.0.4, A.0.5, and

A.0.6 generalize the proofs to accommodate correlated parameters across groups

(leaves) of the population, quantiles of the outcome, and group average policy ef-

fects, respectively.

7 Estimation and Inference

Estimation and inference of group average policy effects rely on the presence of

conditional moment functions within each subset of the identified group space. We

define these population conditional moment functions as follows:

E
[(

ρ(Ai, θℓg)
)
|g(Xi) = γ

]
= 0. (16)

Here, the vector-valued parameter θℓg belongs to the ℓ-th partition. Parameters

can exhibit heterogeneity across a smaller subset of the latent group space denoted

as Z (which coincides with G in this article). The first assumption we make is the

existence of a solution within each ℓ-th subset.

Assumption 7.1. For all γ ∈ G, the conditional expectation E
[(

ρ(Ai, θℓg)
)
|g(Xi)

]
is

bounded, and its supremum norm 3 converges to zero as the sample size increases, i.e.,

sup
γ∈G

∣∣∣∣E[(
ρ(Ai, θℓg

)
|g(Xi) = γ

]∣∣∣∣ = o(1).

.

This assumption ensures that the error in each partition remains bounded and

does not grow infinitely large with increasing data.

3Also labeled as Forbeius norm with ||A||F =
√

tr(AAT). Here, AT is the transpose of A.
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Assumption 7.2. For each subset ℓ, there exists a matrix Ω(Xi) ∈ Rp×p such that the

eigenvalues of Ω(Xi) are uniformly bounded by a constant λ and

E

[
Ω(Xi)

∂ρ(Ai, θℓg
)

∂θℓg

]
(17)

is strictly positive definite.

Assumption 7.2 ensures that the covariance structure of the parameters is in-

vertible with non-zero eigenvalues. Let Assumptions 7.1 and 7.2 hold. Denote Σ

as the covariance matrix of θ̃(g(Xi), Sest, Π). We aim to minimize the discrepancy

between the group-level policy effect, represented by θg, and its expected value (see

also Athey and Imbens, 2016).

EStr,Sest

[(
θg − θ̃(g(Xi), Sest, Π)

)T
Σ−1(θg − θ̃(g(Xi), Sest, Π)

)]
. (18)

Algebraic transformations (as shown in Appendix A.0.7) lead to the unbiased

empirical analogue that we maximize at each split of the population group space:

θ̂(γ, Sest, Π) = arg max
θ̃

1
Ntr ∑

ℓ

Ntr
ℓ

(
θ̃(g(Xi), Π)TΣ̂−1θ̃(g(Xi), Π)|g(Xi) = γ

)
, (19)

where the covariance matrix can be estimated as Σ̂ = Σ̂
(
θ̃(g(Xi), Str, Π)|Nest). In

this article, training and estimation samples have an equal number of observations,

Ntr = Nest.

Inference of policy effects relies on the bootstrap method. Let b = 1, . . . , B be

the b-th bootstrapped sample. We use a tree Πb and the corresponding estimation

sample Sest
b to obtain θ̂(γ, Sest

b , Πb) for a generic individual with a group value of

γ. Next, the average of the individual tree estimates is θ̂
(
γ, {Sest

b }B
b=1}, {Πb}B

b=1

)
=

1
B ∑B

b=1 θ̂(γ, Sest
b , Πb) = θ̄, where θ̄ is an m−dimensional vector of parameters. Then

the estimation of the following pairwise variances and covariances can lead to valid
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confidence ellipses:

Var
[
θ̂m(x, Sest

b , Πb)
]
=

1
B

B

∑
b=1

(
θ̂m(x, Sest

b , Πb)− θ̄m
)2 (20)

Cov
[
θ̂m(x, Sest

b , Πb), θ̂m′(x, Sest
b , Πb)

]
=

1
B

B

∑
b=1

∆,

where ∆ =
(
θ̂m(x, Sest

b , Πb)− θ̄m
)(

θ̂m′(x, Sest
b , Πb)− θ̄m′

)
.

The confidence ellipse is given as:

(θ̂(x, Sest
b , Πb)− θ̄)TŜ−1(θ̂(x, Sest

b , Πb)− θ̄) = r2. (21)

Here, Ŝ−1 represents the bootstrapped variance-covariance matrix, wherein pair-

wise covariances are estimated using (20). r2 follows the chi-squared distribution

with M degrees of freedom. Algorithm 1 summarises the steps required to imple-

ment the method 4.

Algorithm 1: Multivariate Causal Forest for Group Average Policy Effects
Require: number of trees, tree depth, number of leaves |Π|, the number of

observations for each bootstrapped data set (s), number of observations in each
leaf, data

(
{Xi}N

i=1, {Yi}N
i=1, {Pi}N

i=1
)
.

Ensure: Predicted Group Average Policy Effects.
1. Identify the optimal number of latent groups based on the partial least
squares algorithm and k−fold cross-validation (see Section 5).
2. Divide data into train (Str), estimation (Sest) and test samples (Ste).
3. Identify the optimal partitions (leaves) based on Str and the moment function
in (19); estimate the policy effects in Sest.
4. Predict the group average policy effects by using Ste.

4Throughout the article, I use the grf package Tibshirani et al. (2023) to implement the algo-
rithm. I also provide a Python code at the GitHub repository https://github.com/MariaRevili/

multivariate-causal-forest.
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8 Simulated Experiment: Group Average Policy Effects

The simulation design emulates a randomized controlled trial proposed by Narek-

lishvili et al. (2022) within a multivariate framework. The decision-maker is equipped

with two distinct outcomes, namely Yi1 and Yi2, along with the policy Pi, and four

unique variables denoted as Xi1, Xi2, Xi3, and Xi4. Concretely, the outcomes are

determined by a combination of the policy intervention and the individual charac-

teristics pertaining to each participant i = 1, . . . , N.

Xi1, Xi2, Xi3, Xi4,∼ N (N, µ, Σ), µ = (−1, 1, 2, 0), Σ = 14×4, (22)

Pi ∼ B(N, 1, 0.5), εi ∼ N (N, 0, 1)

Yi1 = 100 · Xi1 + 100 · Xi2 + Pi · (Xi3 · Xi4) + εi1,

Yi2 = 100 · Xi1 + 100 · Xi2 + Pi · (Xi1 · Xi2) + εi2.

The outcomes exhibit a strong and significant correlation of 95.602%. The policy

variable (Pi) is generated using a binomial distribution denoted as B. Conversely,

the individual characteristics (Xi1, Xi2, Xi3, and Xi4) are sampled from a normal

distribution, denoted as N . Each outcome also consists of a normally distributed

noise (εi1 and εi2). To investigate the performance of the algorithm, I conduct a

Monte Carlo simulation of a randomized controlled trial (RCT) a hundred times.

Each simulation is performed with different sample sizes represented by N = 100,

500, 1000, and 3000. The results from these simulations are then averaged to obtain

more robust and reliable findings. The variance-covariance matrix (Σ) is an identity

matrix, indicating the independence of the individual characteristics.

As highlighted by Nareklishvili et al. (2022), the current design presents notable

challenges for the proposed algorithm. The identification of policy-relevant groups

becomes intricate due to the considerable influence of independent variables on the

outcomes (Xi1 and Xi2). These variables, however, do not contribute significantly

to explaining the heterogeneity of policy effects. Moreover, the outcomes exhibit
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a high degree of correlation and encompass redundant characteristics that do not

play a substantial role in either outcome prediction or the estimation of policy effect

heterogeneity.

Figure 5 illustrates the density of policy effects (Xi3 · Xi4) based on Yi1 alongside

the corresponding predictions obtained by using the multivariate causal forest and

causal forest algorithms.
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Figure 5: The density of simulated and estimated policy effects (Xi3 · Xi4) based on
Yi1 for various number of samples denoted by N = 100, 500, 1000, 3000. The densi-
ties are estimated by the causal forest and multivariate causal forest after reducing
the dimensionality using the partial least squares method (labeled as PLS-MCF).
All results are averaged across a hundred different Monte Carlo simulation experi-
ments. The number of components is set to four in each simulated experiment.

The success of the multivariate causal forest is evident in two distinct aspects.

First, the algorithm demonstrates remarkable resilience in recovering the true den-

sity of policy effects, even when the dataset consists of a limited number of ob-

servations. Second, the multivariate random forest exhibits a notable reduction in
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the variance of group average policy effects compared to the causal forest method,

especially when confronted with small sample sizes. This characteristic signifies

the stability of the multivariate random forest approach in estimating policy effects

across various latent groups. Figure 6 shows the simulated and estimated density of

policy effects based on the second outcome Yi2. The implications remain the same.
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Figure 6: The density of simulated and estimated policy effects (Xi1 · Xi2) based
on Yi2 for various number of samples denoted by N = 100, 500, 1000, 3000. The
results are averaged across a hundred different replications of the experiment. The
densities are estimated by the causal forest and multivariate causal forest (labeled as
PLS-MCF). The number of components is set to four in each simulated experiment.

As shown by Nareklishvili et al. (2022), the partial least squares method cap-

tures latent groups from different segments of the features and outcomes simulta-

neously. This allows us to recover characteristics relevant to the outcomes as well

as policy effect heterogeneity. Furthermore, the multivariate causal forests method

is well-tailored for correlated coefficients and contributes to a reduction in the vari-

ance of the policy effects. Despite being specifically designed to handle correlated
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coefficients, Appendix A.1 provides empirical evidence that, in this setting, the ef-

fectiveness of the method can be attributed to its capability to efficiently identify

and extract latent groups present within the population.

8.1 Multivariate Causal Forest for GATE and Sorted GATE

This section highlights a nuanced distinction between the multivariate random for-

est for estimating group average policy effects and the Sorted Group Average Treat-

ment Effects (Sorted GATE) method proposed by Chernozhukov et al. (2018).

The authors define distinct (sorted) groups based on the quantiles of the esti-

mated policy effects. Within the context of interest, Chernozhukov et al. (2018)

estimate heterogeneous policy effects through a classical causal forest algorithm,

labeled as proxy conditional average treatment effect (Proxy CATE). Subsequently,

the proxy CATE is partitioned into four distinct quantiles. This division allows

for the creation of four groups with unique characteristics: the first group repre-

sents observations with policy effects falling between the 0th and 25th percentiles,

the second and third groups encapsulate the range between the 25th and 75th per-

centiles, and the fourth group encompasses individuals with policy effects span-

ning from the 75th to the 100th percentile. Lastly, the authors run ordinary least

squares regression within each group and estimate heterogeneous policy effects.

Sorted GATE is a powerful estimator in diverse scenarios when the Proxy CATE

is equipped with reliable, trustworthy information concerning the unobservable

policy effects. In the context of the simulation design outlined in this section, we

observe that the estimated Proxy CATE (which is analogous to the estimated het-

erogeneous policy effects using the causal forest approach) displays significant de-

viations from the simulated density of policy effects under two distinct conditions.

First, when the sample size is constrained or limited, the variance and accuracy of

the estimated Proxy CATE tend to be affected, leading to less reliable estimates of

policy effects. Second, when the input data consist of large noise, the Proxy CATE

estimated by the causal forest approach exhibits substantial deviations from the
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simulated policy effects.

Considering the aforementioned challenges, the sorted groups based on the

Proxy CATE may not reflect the correct dimensions that reflect heterogeneous pol-

icy effects. Furthermore, given that Sorted GATE utilizes linear regression as its

foundation, the resulting estimations of policy effects are susceptible to significant

variability, particularly in the presence of noisy data.

Table 1: Estimated Sorted GATEs described by Chernozhukov et al. (2018). Groups
1, 2, 3, 4, 5, and 6 correspond to observations with the proxy CATE falling between
0- 10th, 10-25th, 25-50th, 50-75th, 75-90th, and 90-100th percentiles, respectively.
Proxy CATE is estimated by the conventional causal forest algorithm. We adopt the
same simulation design summarised by the setup in (23).

Dependent variable:

Baseline 1.299∗∗∗

(0.013)
Sorted GATE - Group 1 26.011∗∗∗

(9.066)
Sorted GATE - Group 2 3.420

(7.375)
Sorted GATE - Group 3 −4.654

(5.594)
Sorted GATE - Group 4 −5.890

(5.673)
Sorted GATE - Group 5 1.644

(7.265)
Sorted GATE - Group 6 −6.934

(8.991)
Constant 0.941

(1.411)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1 presents the GATE coefficients alongside their respective standard er-

rors, categorized by groups. The findings from Table 1 indicate that the coefficients

obtained through Sorted GATE demonstrate considerable variability attributed to

the presence of noise in the data. Furthermore, the observed coefficients do not

display significant heterogeneity within the studied groups.
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9 Simulation Design: Confidence Ellipses

The multivariate causal forest provides a framework for devising a joint hypothesis

test by utilizing high-dimensional confidence intervals. In this section, I investigate

the confidence ellipses within a two-dimensional coordinate system. Consider, a

simulated experiment of the following form:

Xi1, Xi2, Xi3 ∼ N (N, µ, Σ), µ = (0, 0, 0), Σ = 13×3, (23)

Pi ∼ B(N, 1, 0.5), εi ∼ N (N, 0, 1)

Yi1 = 0.5 + Pi · (Xi2 + 0.5Xi1) + εi1,

Yi2 = 0.5 + Pi · (Xi3 + 0.5Xi1) + εi2.

All variables are defined as before. However, the independent characteristics

come from the preferential attachment algorithm (Jeong et al., 2003). Each node

of the network represents one feature. The resulting network follows a power-

law degree distribution, and thus, is scale-free. That means, only a few variables

(characteristics) in the network have a relatively large number of ”neighbors”. The

distance between two characteristics is the shortest path between them in the net-

work. We calculate a D × D (D = 3) pairwise distance matrix L, for Xi ∈ RD. Next,

this distance matrix is transformed into a covariance matrix Σ(m,m′) = 0.5L(m,m′) ,

where (m, m′) represents the element in each row m and column m′ of a matrix L

(m, m′ = 1, . . . , D). Overall, we obtain the following variance-covariance matrix for

the three-dimensional characteristic space:

Σ =


1 0.500 0.250

0.50 1 0.125

0.25 0.125 1


Figure 7 illustrates such a network visually. In this simulation design, I generate

a network with a node size of one thousand, and the number of observations N

equals one thousand.
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Figure 7: Visualization of four different network structures inherent to the space of
independent characteristics. The number of nodes is set to fifty in each case.
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Figure 8: Simulated and estimated policy effects in a two-dimensional coordinated
system. The number of simulated observations is equal to one thousand, and the
number of trees in a multivariate causal forest is set to one thousand. The mean
squared error for the policy effects stemming from the first and second outcomes
are 0.257 and 0.305, respectively.

To estimate policy effects, I construct a multivariate causal forest with one thou-

sand trees. Then I aggregate the results by averaging policy effect estimates across
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each tree. Moreover, I estimate the variance-covariance matrix by using the boot-

strap approach. Figure 8 shows the simulated and estimated policy effects. The

results closely resemble the simulated effects, and the mean squared error is neg-

ligible in each case. The computed mean covariance between the first and second

policy effects is 0.772, closely approximating the true value of 1.024.

Figure 9 illustrates confidence ellipses for policy effects with and without ac-

counting for covariance. Panel (a) incorporates covariance, while Panel (b) does

not. Notably, in Panel (b), around 5% of individuals fall outside the ellipse, poten-

tially leading to misleading inference on policy effect estimates.
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(a) Confidence ellipse with covariance
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(b) Confidence ellipse without covariance

Figure 9: 95% confidence ellipses with a radius that equals the square root of chi-
squared distribution with two degrees of freedom. The confidence ellipse without
covariance induces 49 out of 1000 observations to fall outside the interval.

Figure 10 shows 95% and 90% confidence ellipses for a particular individual.

The improved coverage and precision of confidence ellipses are evident when con-

sidering the covariance of policy effects. Appendix A.1, Figure 19, illustrates con-

fidence ellipses for groups with varying signs of covariance. Appendix A.3 in ad-

dition illustrates the rates of convergence of the multivariate causal forest after the

dimensionality reduction and GRF. According to Appendix A.3, the distinction is

negligible.
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Figure 10: Panel (a) and (b) correspond to 95% and 90% confidence ellipses, respec-
tively, for one particular individual. Data are simulated from a joint normal distri-
bution of policy effects with the means of 1.64, -0.140, variances of 0.596, 0.839, and
covariance of 0.445, respectively.
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10 Dialogue Meetings and Sickness Absence: A Field

Experiment

The Norwegian insurance system grants all employees the entitlement to sick leave

benefits for a period of up to one year, following a qualifying span of four weeks

of employment. During this period, the initial few days of sick leave (either 3 or 8

days) can be self-certified, but any further sick leave must be certified by a physi-

cian. Norway has consistently ranked among the European leaders in terms of sick-

leave rates, with the rate hovering around 6 percent. As a result, efforts to combat

absenteeism and promote a swift return to work have become central to the polit-

ical agenda for an extended period. In this attempt, the use of dialogue meetings

(DMs) has emerged as one of the prominent measures adopted to address the issue.

The Norwegian Labour and Welfare Administration (NAV) facilitates and co-

ordinates dialogue meetings by extending invitations to the sick-listed employee,

the employer, and the physician involved. Additionally, a caseworker from NAV

actively participates and presides over the meeting, and documents the duration of

sick leave. These dialogue meetings are conducted within a specified timeframe

of 26 weeks from the onset of the sickness spell. During these gatherings, the

involved parties engage in a comprehensive assessment of the situation at hand,

jointly devising a well-coordinated plan of action aimed at reintegrating the sick-

listed worker back into the workplace. Although the meeting does not culminate in

a legally binding agreement, a NAV caseworker summarises the meeting and drafts

a comprehensive timeframe of the sickness absence of a worker.

Alpino et al. (2022) conduct an extensive, pre-registered, and randomized field

experiment in collaboration with the Norwegian Labour and Welfare Administra-

tion (NAV). The primary aim is to investigate the effects of summoning sick-listed

individuals to a dialogue meeting, as compared to those who are not summoned

but still have the option to request one. The experiment was carried out between

2016 and 2018, employing a thoughtfully designed randomization scheme. Specif-

ically, the internet page implements a random draw of individuals, allocating the
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absentee to one of eight different treatment arms.

The present paper builds upon data provided by Alpino et al. (2022), which

extensively utilize three primary sources: i) The randomization data set, which en-

compasses information on the assignment of individuals on sick leave to different

treatment arms. ii) Caseworker surveys, which provide valuable insights into the

caseworkers’ perspectives and experiences during the experiment. iii) Outcomes

and independent characteristics delivered by NAV, which offers comprehensive in-

formation on various relevant features of the absentees and outcome measures.

We investigate the heterogeneous effects of dialogue meetings on two distinct

outcome measures: total days of sickness absence (Total days) and days of sick leave

within the current spell (Days within spell). Total days of sickness absence represent

the cumulative count of days an individual was absent due to sickness from the ini-

tial draw date until the date of data extraction. On the other hand, days within spell

refer to the specific number of sick leave days experienced within the ongoing sick

leave spell. These outcomes are highly correlated, with a rate of 78.4%. Independent

characteristics consist of gender (a binary indicator for Female), Age, Marital status,

Nationality, the Grade (i.e. percentage) of sickness absence at the time of the draw,

Days before representing the total number of days on sickness absence since 2015 up

until the date of the draw. Symptoms which reflect the share of absentees classified

by the physician as having symptoms rather than diagnoses according to the In-

ternational Classification of Primary Care (ICPC-2), nr employees being the number

of employees at the absentee’s workplace (at the time of the draw). A detailed de-

scription of data and summary statistics can be found in the work of Alpino et al.

(2022).

10.1 Interpreting Identified Latent Groups

Cross-validation, as detailed in Appendix A.2, reveals the presence of four distinct

target components. These latent components are continuous and encompass differ-

ent groups of the population. To interpret the groups, we employ the ordinary least
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squares regression where each component is regressed on all the characteristics of

sick-listed workers.

Table 2 investigates the relationship between the components and various char-

acteristics of sick-listed workers. The results of Table 2 highlight several key obser-

vations regarding the identified groups. First, it is evident that the characteristics

fully explain the generated groups (R2 = 1). This finding is not surprising as the

identified groups of the population represent linear combinations of the covariates.

Second, the coefficients associated with each characteristic play a crucial role in

determining the composition of each segment within the identified groups. For in-

stance, the positive coefficient attributed to Married in Component 2 implies that

the high values of Component 2, among others, are represented by married sick-

listed workers. Lastly, the magnitude of these coefficients provides insights into the

extent of influence each individual characteristic has over a given component.
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Table 2: Ordinary Least Squares regression of four distinct components and the
characteristics they comprise of. Highlighted values represent the coefficients with
a value greater than 0.500 for each. Comp is equivalent to a given component.

Dependent variable:

Comp 1 Comp 2 Comp 3 Comp 4

(1) (2) (3) (4)

Female 0.098∗∗∗ −0.605∗∗∗ −0.495∗∗∗ 1.196∗∗∗

(0.000) (0.000) (0.000) (0.000)
Age −0.601∗∗∗ −0.170∗∗∗ 0.057∗∗∗ 0.514∗∗∗

(0.000) (0.000) (0.000) (0.000)
Never-married 0.401∗∗∗ −1.109∗∗∗ 0.168∗∗∗ 0.138∗∗∗

(0.000) (0.000) (0.000) (0.000)
Grade 1.033∗∗∗ 0.748∗∗∗ −1.021∗∗∗ −0.277∗∗∗

(0.000) (0.000) (0.000) (0.000)
nr employees 0.156∗∗∗ 0.138∗∗∗ −0.176∗∗∗ −0.067∗∗∗

(0.000) (0.000) (0.000) (0.000)
Married −0.060∗∗∗ 1.272∗∗∗ 0.071∗∗∗ 0.104∗∗∗

(0.000) (0.000) (0.000) (0.000)
Norwegian 0.150∗∗∗ 0.0003∗∗∗ 0.788∗∗∗ −0.418∗∗∗

(0.000) (0.000) (0.000) (0.000)
Widow −0.136∗∗∗ 1.587∗∗∗ 0.038∗∗∗ −3.304∗∗∗

(0.000) (0.000) (0.000) (0.000)
Days before −0.004∗∗∗ −0.003∗∗∗ −0.007∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)
Symptoms 0.649∗∗∗ 0.081∗∗∗ −0.278∗∗∗ 0.849∗∗∗

(0.000) (0.000) (0.000) (0.000)
Constant −0.557∗∗∗ 0.321∗∗∗ 1.220∗∗∗ −0.293∗∗∗

(0.000) (0.000) (0.000) (0.000)

Observations 10,230 10,230 10,230 10,230
R2 1.000 1.000 1.000 1.000
Adjusted R2 1.000 1.000 1.000 1.000
Residual Std. Error (df = 10219) 0.000 0.000 0.000 0.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Larger coefficients imply a more substantial impact, emphasizing the degree of

exposure each characteristic has within a particular group. In this article, we fo-

cus on primary characteristics with the absolute value of the coefficient larger than

0.500 (highlighted in Table 2). Overall, according to Table 2, the low values of each

corresponding component are primarily equivalent to:

• Component 1 ∼ older absentees with a low grade of sickness absence at the
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time of the draw and no symptoms,

• Component 2 ∼ females who have never been married or widowed, and have

a low grade of sickness absence at the time of the draw,

• Component 3 ∼ Norwegians with a low grade of sickness absence at the time

of the draw,

• Component 4 ∼ young widowed males with no symptoms.

Likewise, elevated values within the components can be perceived as opposite to

the characteristics observed in the low-value segments. Multiple collections of four

components comprise groups. A notable advantage of the derived components lies

in their continuity. They reflect a diverse spectrum of individuals represented with

varying degrees within each group segment.

10.2 The effect of dialogue meetings on sick leave

Figure 11 depicts the probability density functions representing the influence of di-

alogue meetings (DMs) on two correlated outcomes: ”Total days” and ”Days within

spell”. The independent variables for the multivariate causal forest are the identi-

fied components of the population.
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Figure 11: The densities of the effect of dialogue meetings (DM) on total days of
sick leave and days of sick leave within the spell, respectively.
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The impact of DMs on total days displays noteworthy heterogeneity. This het-

erogeneity suggests that certain individuals experience a substantial reduction of 10

days in sick leave due to DMs, while others encounter an increase of 10 days in sick

leave as a consequence of these meetings. The findings highlight the variability of

the relationship between DMs and sick leave, warranting further investigation and

consideration in decision-making processes.

Figure 12 presents the primary findings of this article, depicting distinct quan-

tiles of the impact of dialogue meetings (DMs) on Total days (a) and Days within

spell (b), respectively. The figure reveals a two-dimensional pattern of heterogene-

ity. Specifically, the effect of DMs on each outcome displays substantial variation

within and across the vigintiles of the second component 5.

Among never-married females with a low percentage (grade) of sickness ab-

sence (representing the bottom vigintiles), there is a significant reduction in the

total number of days on sick leave. On average, never-married females can con-

tract up to 10 days of sick leave. The effect on Days within spell is positive, yet

statistically non-significant. Conversely, for married sick-listed workers, dialogue

meetings lead to a significantly prolonged sick leave, with an extension of up to 10

days.

5I do not observe statistically significant heterogeneities among the other identified components;
consequently, I do not present them in the article.
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Figure 12: The effect of dialogue meetings (DM) on total days of sick leave and days
of sick leave within the spell, respectively.
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Moreover, the policy effect of the married exhibits a higher variance compared to

never-married females. Figure 13 visually depicts this difference, showing a signif-

icant increase in the spread between the top 0.975th and 0.025th percentiles, partic-

ularly among the segment of married sick-listed workers. In contrast, Appendices

A.3.1 and A.3.2 show that the conventional causal forest method does not detect

significant heterogeneities across the given components or the original covariates.

These empirical findings underscore the necessity of adopting a highly person-

alized and targeted policy-making, specifically tailored to address the needs of mar-

ried workers who exhibit a higher grade of severity and significantly extended sick

leave as a result of dialogue meetings.
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Figure 13: The difference between top and bottom quantiles

10.3 Explaining Policy Effect Heterogeneity

I further investigate the economic significance of the findings by displaying the

proportion of never-married females across the vigintiles of the second component.

As Figure 14 shows, the share of never-married females is more than 15% in the

initial five vigintiles and progressively diminishes to zero in the last five.
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Figure 14: Share of never-married females within vigintiles of the second compo-
nent.

I further conduct a comparative analysis on the distribution of individuals ex-

periencing positive and negative policy effects, as depicted in Figure 15. The graph

shows a notable prevalence of negative effects of DMs on total days of sick leave

among the initial fifteen vigintiles of the second component. Conversely, this trend

reverses in the uppermost five vigintiles of the second component, which are en-

tirely comprised of married sick-listed workers.

Findings indicate that the disparities in the effects of DMs on the days of sick

leave are predominantly attributed to marital status.
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Figure 15: The effect of dialogue meetings (DM) on total days of sick leave and days
of sick leave within the spell, respectively.
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11 Conclusion

Policymakers frequently encounter scenarios where they have access to diverse

policies or outcomes and wish to assess variations in policy effects among distinct

population groups. In response, this paper introduces a multivariate causal forest

method specifically designed to estimate such variations, both within and across

individual groups of the population.

The underlying groups in this article are initially unknown and can be both con-

tinuous and unordered. The process of identifying the groups is adaptive, utiliz-

ing the partial least squares algorithm. The key aspect of this approach is that the

identified target components that comprise a group are represented as linear com-

binations of individual characteristics. As a result, I show that the formed groups

possess meaningful economic interpretations. As a next step in policy effect eval-

uation, the multivariate causal forest allows us to detect specific segments of the

groups that are most susceptible to a policy or intervention. In this article, I illus-

trate that the estimates of the multivariate causal forest are asymptotically normally

distributed.

To illustrate the applicability of the algorithm, I revisit a field experiment, the

influence of dialogue meetings on the duration of sickness absence (described by

Alpino et al., 2022). Among the identified groups, I find that marital status ex-

plains a significant variation in policy effects. On average, never-married females

can contract up to 10 days of sick leave. Conversely, for married sick-listed workers,

dialogue meetings lead to a significantly prolonged sick leave, with an extension of

up to 10 days. Moreover, the policy effect of the married exhibits a higher variance

compared to never-married females. These empirical findings underscore the ne-

cessity of adopting a highly personalized and targeted policy-making, specifically

tailored to address the needs of married workers who exhibit a higher grade of

severity and significantly extended sick leave as a result of dialogue meetings.

The multivariate causal forest methodology is highly suitable for randomized

experiments that involve multiple outcomes or policy options. One useful exten-
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sion would be to generalize the theoretical properties of the multivariate causal

forest to non-i.i.d. data. Minh et al. (2023) introduce Hoeffding decomposition

for U-statistic in the presence of network effects. I plan to adopt their approach

and accommodate network structures in the setup. The second useful theoretical

extension is to investigate the theory of partial least squares when the individual

characteristics are not elliptically distributed. Lastly, I plan to extend the empirical

results of a paper by proposing an economic model that theoretically explains the

differences between never-married females and married absentees.
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A.0.1 Lemma 6.1

Proof. Define the Hajek projection of the multivariate random forest estimator:

Ḟ (γ, A1, . . . , AN)− µ =
N

∑
i=1

E
(
F (γ, A1, . . . , AN)− µ|Ai

)
= (24)

1(
N
s
) N

∑
i=1

E

(
∑

1≤i1≤···≤is≤N
Eξ T(γ, ξ, Ai1 , . . . , Ais)− µ|Ai

)
,

where
(

N
s
)

is the number of i1 ≤ · · · ≤ is size-s subsets from 1, . . . , N observations.

 

Figure 16: Hajek Projection of a (vector-valued) U-statistic, formed by the expectation of sym-
metric functions (i.e., trees), and aggregated over subsamples i1, . . . , is. π(A1, . . . , AN) denotes per-
mutations of the data and ⊥ is the orthogonality. Projection is the expectation of F conditional on
covariates g(Xi). It can be shown that E

[
(T − Ṫ)∑N

i=1 f (g(Xi))
]
= 0.

When the observation i is not in samples 1 ≤ i1 ≤ · · · ≤ is, then the condi-

tional expectation of the tree (aggregated over the randomization) is the same as

the unconditional one. Therefore:

E
(
Eξ T(ξ, Ai1 , . . . , Ais)|Ai

)
= Eξ,Ai1

,...,Ais
T(γ, ξ, Ai1 , . . . Ais) = µ.
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Overall, there are
( N−1

s−1

)
samples that contain observation i. Moreover, the se-

quence of observations is i.i.d. and the trees are permutation symmetric. Therefore,

for each sample,

E
(
Eξ T(γ, ξ, Ai1 , . . . , Ais)− µ|Ai

)
= T1(Ai)− µ, (25)

where T1(a) = Eξ,A2,...,AN T(γ, ξ, a, A2, . . . , AN).

Incorporating (25) in (24) yields:

Ḟ (γ, A1, . . . , AN)− µ =

( N−1
s−1

)(
N
s
) N

∑
i=1

(
T1(Ai)− µ

)
=

s
N

N

∑
i=1

(
T1(Ai)− µ

)
. (26)

Since the observations A1, . . . , AN are i.i.d, the same property holds for T1(Ai).

By taking the expectation of both sides in (26), we can easily verify that E
(
Ḟ (γ)

)
=

µ where Ḟ (γ) = Ḟ (γ, A1, . . . , AN). Define Σ to be the covariance matrix of Ḟ (γ, A1, . . . , AN).

Then:

Σ = V

[
s
N

N

∑
i=1

(
T1(Ai)− µ

)]
=

s2

N
V
(
T1(Ai)

)
=

s
N

V
( s

∑
i=1

T1(Ai)
)
=

s
N

V(Ṫ) ∈ RM×M,

(27)

where Ṫ = ∑s
i=1 T1(Ai) is the Hajek projection of a tree T(γ, A1, . . . , AN) =

Eξ T(γ, ξ, A1, . . . , AN) ∈ RM. Note that, a tree T is symmetric in its arguments, and

observations i = 1, . . . , N are i.i.d. Therefore, the Hajek projection of a tree estimator

reduces to ∑s
i=1 T1(Ai) (as in (26)). We disregard the second (constant) term, as it

does not enter in the variance V. Note that since the statistic T1(Ai) is a vector, the

operation V applies coordinate-wise.
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A.0.2 Lemma 6.2

Proof. Define the mean squared deviation of the multivariate forest estimator and

its projection:

E(F − Ḟ )TΣ−1(F − Ḟ ) = E
[
trΣ−1(F − Ḟ )(F − Ḟ )T] = (28)

trΣ−1E(F − Ḟ )(F − Ḟ )T = trΣ−1/2V
(
F − Ḟ

)
Σ−1/2.

Assume there exist functions Ti, such that the following equality holds:

E
(
Ti(g(Xi) ∈ B)|g(Xi) /∈ B)

)
= 0. (29)

Equation (29) is the necessary condition for the weak independence of the ex-

changeable sequences of g(Xi). Assume, Ti(g(Xi) ∈ B) are symmetric, square-

integrable, vector-valued functions. Then each Ti and Ti′ are pairwise independent.

Since i = 1, . . . , N is an exchangeable (i.i.d) sequence, Theorem 6 of Peccati (2004)

applies. In addition, Proposition 1 of Li (2020) applies to our case as well. We define

Höeffding decomposition of a multivariate U-statistic:

F − Ḟ =
1(
N
s
)[∑

i<j

( N−2
s−2

)(
T2(Ai, Aj)− µ

)
+ ∑

i<j<m

( N−3
s−3

)(
T3(Ai, Aj, Am)− µ

)
+ . . .

(30)

where T2, T3 . . . are second, third, and higher order projections of a tree T that meet

the following conditions:

E
(
Ti − µ

)T
Σ−1(Ti′ − µ

)
= 0 for each i ̸= i′, and (31)

E
(
Ti − µ

)T
Σ−1(Ti − µ

)
≤ E

(
T − µ

)T
Σ−1(T − µ

)
, (32)

where Ti and Ti′ are the i- th and i′-th projections of the tree, with i = 1, . . . , N.

We fix the variance (Σ) of the multivariate random forest estimator. Moreover,
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we notice that
(

N
s
)
≥

( N−1
s−1

)
≥

( N−2
s−2

)
≥

( N−3
s−3

)
≥ . . . . Therefore:

F − Ḟ ≤ s
N

[
∑
i<j

(
T2(Ai, Aj)− µ

)
+ ∑

i<j<m

(
T3(Ai, Aj, Am)− µ

)
+ . . .

]
, (33)

where s
N =

(
N−1
s−1

)(
N
s
) . Based on Equation (32), the variance of F − Ḟ has an upper

bound:

V
(
F − Ḟ

)
≤

(
s
N

)2

V(T). (34)

In (27) we derived Σ = s
N V(Ṫ). Plugging the value of Σ and (34) in (28) leads to

the upper bound of the squared deviation:

E(F − Ḟ )TΣ−1(F − Ḟ ) ≤ tr
(( s

N
V(Ṫ)

)−1/2
(

s
N

)2

V(T)
( s

N
V(Ṫ)

)−1/2
)
= (35)

s
N

tr
((

V(Ṫ)
)−1

V(T)
)

In the final equality, we use the cyclic property of the trace operator: tr(XYZ) =

tr(YZX) = tr(ZXY).

A.0.3 Theorem 6.1

Proof. Bounded elements of V(T) directly follow from the proposed assumptions.

According to Assumption 6.5, the number of observations in each terminal node

is bounded above. This implies that the variance of the tree is bounded above

by constant times V(Yim|g(Xi) = γ). Moreover, Assumption 6.3 guarantees that

V(Yim|g(Xi) = γ) is bounded away from zero.

In the context at hand, we rely on the findings presented by Wager and Athey

(2018) concerning the order of variance terms. Specifically, they show that:
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V(Ṫ)ii =
C

logG(s)
, for some constant C. (36)

V(Ṫ)ii denotes the diagonal terms of the variance of the projection of a tree

estimator. We show that the off-diagonal terms V(Ṫ)ij = o
( 1

logG(s)

)
for all i ̸= j.

Start with the definition of a Hajek projection of a tree:

Ṫ − µ =
s

∑
i=1

E(T|Ai) (37)

Since the observations are i.i.d., then:

V
(
Ṫ
)
= sV

(
E(T|A1)

)
. (38)

Then it is clear to see that:

V
(
E(T|A1)

)
= V

(
E(T|A1)− E(T|g(X1))

)
+ V

(
E(T|g(X1)

)
. (39)

Consider m-th outcome variable, where m = 1, . . . , M. Since the tree is honest,

the diagonal terms in (39) simplify as follows (see the Proof of Theorem 5 in Wager

and Athey, 2018):

V
(
E(T|A1)− E(T|g(X1))

)
mm = V

(
E(Sℓn |g(X1))(Y1m − E(Y1m|g(X1))

)
mm ≈

E
[(

E(Sℓn |g(X1))
)2]

E
[(

Y1m − E(Y1m|g(X1))
)2]

=

(40)

E
[(

E(Sℓn |g(X1))
)2]Var(Ym|g(X1) = γ),

and

V
(
E(T|g(X1)

)
mm = E

[(
E(Sℓn |g(X1))

)2]Var
(
E(Ym|g(X1) = γ)

)
. (41)
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where Sℓn is the indicator function and equals one if g(X1) ∈ ℓn(γ, Π), and zero

otherwise.

The off-diagonal terms equal to:

V
(
E(T|A1)− E(T|X1)

)
mm′ = E

[(
E(Sℓn |g(X1))

)2]
E
[
(Y1m − E(g(X1)))(Y1m′ − E(Y1m′ |g(X1)))

]
.

(42)

According to Assumption 6.3, the variance of each outcome variable is bounded

away from zero. Cauchy-Schwarz inequality implies that |Cov(Yim, Yim′ |g(X1))| is

also bounded away from zero 6.

|Cov(Y1m, Y1m′ |g(X1) = γ)| ≤
√

Var(Y1m|g(X1) = γ)Var(Y1m′ |g(X1) = γ).

Wager and Athey (2018) show that

E
[(

E(Sℓn |g(X1))
)2] ≥ (G − 1)!

2G+1 logG(s)
· 1

ks
, (43)

where k is the minimum number of observations in a given terminal node. Com-

bining (38) and (43) yields the order of diagonal and off-diagonal terms:

V
(
Ṫ
)

mm = o
(

1
logG(s)

)
, and V

(
Ṫ
)

mm′ = o
(

1
logG(s)

)
. (44)

Now we prove that s
N tr

((
V(Ṫ)

)−1
V(T)

)
−→ 0 in a more general framework.

Consider, we have two square matrices C and B with diagonal (cii, bii) and non-

diagonal terms (cij, bij), respectively. Moreover, they exhibit the following proper-

6An alternative argument is to notice that the term in the integrand consists of multiples of
the first and second moments of the outcome variables Y1m and Y1m′ . Since these moments are
continuous, they are bounded. Thus, their expectation is also bounded.
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ties:

1. bii ≥ η for some η ∈ R+ and for all i = 1, . . . M, (45)

2. cii ≥
bii

log(N)
, (46)

3. cij = o
(

1
log(N)

)
. (47)

Then we show that s
N tr(C−1B) −→ 0. Recall that the Leibniz formula for the

determinant is given as follows:

det(C) = ∑
π

(
sgn(π)

M

∏
i=1

ci,πi

)
, (48)

where π is a permutation function that reorders the set {1, . . . , M}. Diagonal and

off-diagonal terms are on the same order, their product is also on the same order.

Therefore, det(C) is asymptotically equivalent to either ∏M
i=1 cii or ∏M

i=1 cij where i ̸=

j. For simplicity, we keep the notation that det(C) ∼a ∏M
i=1 cii, where ” ∼a ” denotes

asymptotic equivalence. Based on Cramer’s rule, we can write i-th diagonal term

of the inverse of C:

(C−1)ii =
det(C−i)

det(C)
.

C−i is the matrix where we remove the i-th row and the i-th column. By the same

argument, det(C−i) ∼a ∏M−1
j=1 cjj. Then we end up with:

(C−1)ii ∼a ∏M−1
j=1 cjj

∏M
i=1 cii

=
1
cii

.

The i-th diagonal entry of the matrix

(C−1B)ii = (c−1)iibii + ∑
j ̸=i

(c−1)ijbji ∼a bii

cii
≤ log(N).

The last equality follows from Property 2 in (46). Therefore, the trace of (C−1B) is

also on the order of log(N). We take the limit of s
N tr(C−1B), where s = Nβ and
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β < 1. L’Hôpital’s rule yields:

lim
N−→∞

s
N

log(N) = lim
N−→∞

1
(1 − β)N1−β

−→ 0. (49)

The proof is complete by letting C =
(
V(Ṫ)

)−1 and B = V(T).

A.0.4 Outcomes Correlated Across Groups

Denote two different leaves as ℓ and ℓ′. The aim is to show that

s
N

tr
(
Var(Ṫ)−1Var(T)

)
→ 0.

Consider the Hajek projection of a tree

Ṫ − µ =
s

∑
i=1

E(T|Ai), so that Var(Ṫ) = sVar(E(T|A1).

The last equality follows as the data Ai = (Yi, g(Xi)) are i.i.d. Moreover, the variance

of the conditional expected tree can be expanded as:

VarE(T|A1) = Var
[
E(T|A1)− E(T|g(Xi))

]
+ Var

[
E(T|g(Xi))

]
.

The algorithm is honest, therefore, the difference E(T|A1)− E(T|g(Xi)) simpli-

fies to

E(Tℓ|A1)− E(Tℓ|g(X1)) = E(Sℓ|g(Xi))(Ym1 − E(Ym1|Sℓ = 1, g(Xi))).

Tℓ is a tree estimate at γℓ and Sℓ is an indicator of whether g(X1) and γℓ belong to

the same terminal node. The outcome Ym1 denotes the m-th outcome for the first

observation. Note that the covariance matrix in each tree now consists of not only

the covariance between the outcomes within a leaf but across terminal nodes as

well. Therefore, we focus on the covariance of an outcome from a leaf ℓ with the
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same outcome from another leaf ℓ′ and with another outcome Ym′ from another leaf

ℓ′:

E
[
E(Sℓ|g(Xi))E(Sℓ′ |g(Xi))(Ym1 − E(Ym1|Sℓ = 1, g(Xi)))(Ym1 − E(Ym1|Sℓ′ = 1, g(Xi)))

]
,

E
[
E(Sℓ|g(Xi))E(Sℓ′ |g(Xi))(Ym1 − E(Ym1|Sℓ = 1, g(Xi)))(Ym′1 − E(Ym′1|Sℓ′ = 1, g(Xi)))

]
.

The terms E(Ym1 − E(Ym1|Sℓ = 1, g(Xi)))(Ym1 − E(Ym1|Sℓ′ = 1, g(Xi))) and

E(Ym1 − E(Ym1|Sℓ = 1, g(Xi)))(Ym′1 − E(Ym′1|Sℓ′ = 1, g(Xi))) are the polynomi-

als of degree at most two. Since the first and second moments of the outcome are

bounded, these terms are also bounded. Next, Cauchy-Schwarz inequality implies

√
E
[
E(Sℓ|g(Xi))

]2
E
[
E(Sℓ′ |g(Xi))

]2 ≤
√

E
[
E(Sℓ|g(Xi))E(Sℓ′ |g(Xi)).

Therefore, the lower bound of the covariance is on the order o
(

1
logG(s)

)
. Equiva-

lently, we can show that the off-diagonal terms of Var
[
E(T|g(Xi))

]
are on the same

order. Then Theorem 6.1 applies, and the asymptotic normality of the random for-

est estimator holds.

A.0.5 Quantiles of the Outcomes

This section generalises theory of the multivariate causal forest to accomodate quan-

tiles rather than means of the outcome. Meinshausen and Ridgeway (2006) defines

the density of the m−th outcome variable as follows:

E(y|g(Xi) = γ) = P(Yim ≤ y|g(Xi) = γ) = E(1{Yim≤y}|g(Xi) = γ).

1{Yim≤y} is the binary variable indicating the outcome is weakly less than some value

y. Just as E(Yim|g(Xi) = γ) is approximated by the weighted mean over the obser-
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vations of Yim, define the approximation to E(1{Yim≤y}|g(Xi) = γ) by a tree as

F̂(y|1{Yim≤y} = γ) = T(γ, ξ, Ai, . . . , AN) =
|Π|

∑
n=1

1(γ ∈ ℓn)1{Yim≤y}.

Under the assumption that the Hoeffding decomposition exists for quantile re-

gression forests with multiple outcomes, Lemma 6.1 and Lemma 6.2 and their cor-

responding proofs in Appendix A.0.1 and A.0.2 apply directly. The goal is to show

that

lim
N→∞

s
N

tr
((

V(Ṫ)
)−1

V(T)
)
= 0. (50)

In Theorem 6.1, we introduce a Hajek projection of a tree, and show the conver-

gence of the deviation of the multivariate forest and its projection to zero. The proof

is analogous, except the variance of the tree is defined as

V
(
E(T|A1)− E(T|g(X1))

)
mm = V

(
E(Sℓn |g(X1))(1{Y1m≤y} − E(1{Y1m≤y}|g(X1))

)
mm ≈

E
[(

E(Sℓn |g(X1))
)2]

E
[(

1{Y1m≤y} − E(1{Y1m≤y}|g(X1))
)2]

=

(51)

E
[(

E(Sℓn |g(X1))
)2]Var(1{Ym≤y}|g(X1)) ≤

E
[(

E(Sℓn |g(X1))
)2],

and

V
(
E(T|g(X1)

)
mm = E

[(
E(Sℓn |g(X1))

)2]Var
(
E(1{Y1m≤y}|g(X1))

)
≤ E

[(
E(Sℓn |g(X1))

)2],
(52)

where as defined before, Sℓn is an indicator function and equals one if g(X1) ∈

ℓn(γ, Π), and zero otherwise.
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The off-diagonal terms equal to:

V
(
E(T|A1)− E(T|g(X1))

)
mm′ = (53)

E
[(

E(Sℓn |g(X1))
)2]

E
[
(1{Y1m≤y} − E(1{Y1m≤y}|g(X1)))(1{Y1m′≤y} − E(1{Y1m′≤y}|g(X1)))

]
≤

≤ E
[(

E(Sℓn |g(X1))
)2].

The last inequality in each case follows by the fact that the expectation and vari-

ance of 1{Y1m≤y} is bounded by one from above, as it is a binary variable. The rest

of the proof is analogous to Theorem 6.1.

A.0.6 Theoretical Results for Group Average Policy Effects

The proof is equivalent for the multivariate causal forest with group average policy

effects. Wager and Athey (2018) show that for the policy effect,

E
[(

E(Sℓn |g(X1))
)2] ≥ (p − 1)!

2p+1 logp(s)
· ϵ

ks
, (54)

where, ϵ is a constant from Assumption 6.6. This does not change the results of the

proofs, as the order of E
[(

E(Sℓn |(X1))
)2] is still o

(
1

logp(s)

)
.

A.0.7 Method of Moments

Rescaling the moment function and additional algebraic transformations lead to a

simplified unbiased estimator:
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EStr,Sest

[(
θg − θ̃(g(Xi), Sest, Π)

)T
Σ−1(θg − θ̃(g(Xi), Sest, Π)

)
− θT

g Σ−1θg

]
= (55)

EStr,Sest

[ (
θg − θ(g(Xi), Π)︸ ︷︷ ︸

A

+ θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)︸ ︷︷ ︸
B

)T
Σ−1( θg − θ(g(Xi), Π)︸ ︷︷ ︸

A

+

θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)︸ ︷︷ ︸
B

)
− θT

g Σ−1θg

]
= (56)

EStr

(
θT

g Σ−1θg − 2θT
g Σ−1θ(g(Xi), Π) +

θ(g(Xi), Π)TΣ−1θ(g(Xi), Π)− θT
g Σ−1θg

)
+ (57)

Eg(Xi),Sest

((
θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)

)T
Σ−1(θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)

))
=

(58)

− Eg(Xi)

(
θ(g(Xi), Π)TΣ−1θ(g(Xi), Π)

)
+ E(tr(I))2×2. (59)

The second equality follows after taking into account the independence of the

train and estimation data, cov(A, B) = 0. The final equality is based on the fact that

θ(g(Xi), Π) = E(θg|g(Xi) ∈ ℓ(γ, Π)), E
(
θ̃(g(Xi), Sest, Π)

)
= θ(g(Xi), Π), and:

Eg(Xi),Sest

((
θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)

)T
Σ−1(θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)

))
=

tr
(

Σ−1E
(
θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)

)T(
θ(g(Xi), Π)− θ̃(g(Xi), Sest, Π)

))
=

tr(Σ−1Σ) = tr(I)2×2,

where tr(I)2×2 is the trace of a 2 × 2 identity matrix. Since E(tr(I))2×2 does not

depend on the parameter of interest, we can disregard it. Hence, the optimal pa-

rameter maximizes the unbiased estimator of the negative mean squared error:

θ̂(γ, Sest, Π) = arg max
θ̃

1
Ntr ∑

ℓ

Ntr
ℓ

(
θ̃(g(Xi), Π)TΣ̂−1θ̃(g(Xi), Π)|g(Xi) = γ

)
, (60)
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where the covariance matrix can be estimated as Σ̂ = Σ̂
(
θ̃(g(Xi), Str, Π)|Nest). In

this article, training and estimation samples have an equal number of observations,

Ntr = Nest.

A.1 Additional Simulations

In this section, we replicate the design of Section 8. However, the independent

characteristics come from the preferential attachment algorithm (Jeong et al., 2003).

Each node of the network represents one feature. The resulting network follows a

power-law degree distribution, and thus, is scale-free. That means, only a few vari-

ables (characteristics) in the network have a relatively large number of ”neighbors”.

The distance between two characteristics is the shortest path between them in the

network. We calculate a p × p (p = 50) pairwise distance matrix L. Next, this dis-

tance matrix is transformed into a covariance matrix Σz,(i,j) = 0.5L(i,j) , where (i, j)

represents the element in each row i and column j of a matrix L (i, j = 1, . . . , p).

According to Figures 17 and 22, in practice, multivariate random forests and

random forests do not significantly differ from each other in this setting.
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Figure 17: The density of simulated and estimated policy effects (Xi3 · Xi4) based on
Yi1 for various number of samples denoted by N = 100, 500, 1000, 3000. The orange
color corresponds to the estimated density of policy effects through multivariate
random forests (labeled as MRF). On the other hand, the color green is employed
to visually illustrate the estimated density of policy effects derived from classical
random forests (labeled as RF). We train and predict the methods on two different
sets of data.
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(b) N = 500
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Figure 18: The density of simulated and estimated policy effects (Xi1 · Xi2) based on
Yi2 for various number of samples denoted by N = 100, 500, 1000, 3000. The orange
color corresponds to the estimated density of policy effects through multivariate
random forests (labeled as MRF). On the other hand, the color green is employed
to visually illustrate the estimated density of policy effects derived from classical
random forests (labeled as RF). We train and predict the methods on two different
sets of data.
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Figure 19: Panel (a) and (b) correspond to confidence ellipses with and without
incorporating covariance, respectively. Data are grouped according to the estimated
sign of covariance.
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A.2 Optimal Number of Components
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Figure 20: Cross-validation results. The optimal number of groups is the minimum
number of groups with the least root mean squared error. See Nareklishvili et al.
(2022) for further details.
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A.3 The Rate of Convergence
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Figure 21: Rates of convergence for generalized random forest (GRF; Athey et al.,
2019) and multivariate causal forest (MCF) in this paper.
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A.3.1 Causal Forest
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(a) Group 2 vigintiles (total days of sick leave)
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Figure 22: Heterogeneity of the effect of DMs on the duration of sick leave. The
densities are estimated by the GRF algorithm with 1000 trees (Athey and Wager,
2019).
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A.3.2 Causal Forest: Heterogeneity across Individual Characteris-

tics
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Figure 23: Heterogeneity of the effect of DMs on total days of sick leave. The densi-
ties are estimated by the GRF algorithm with 1000 trees (Athey and Wager, 2019).
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